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The origin of the tubular jet
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A vertical cylindrical tube is partially immersed in a water-filled container and
pressurized to lower the fluid level inside the tube. A sudden release of the pressure in
the tube creates a singularity on top of the rising free surface. At the very beginning
of the process a jet emerges at the centre of the surface, the strength of which strongly
depends on the initial shape of the meniscus. Here, the time-evolution of the complex
shape of the free surface and the flow around the cylindrical tube are analysed
using high-speed imaging, particle image velocimetry, and numerical simulations. The
tubular jet is found to be created by the following series of events, which eventually
lead to the flow focusing at the tube’s centre. A circular surface wave, produced by
the funnelling of flow into the tube, is pushed inwards by the radial flow directly
underneath the surface. As the wave moves inward and eventually collapses at the
centre of the tube, a bump of fluid grows in the centre due to the converging flow in
the bulk. This converging flow continues to feed the jet after the circular wave has
collapsed. The singularity of the wave collapse is manifested in the initial sharp tip
of the jet. All of the above events are traced back to a single origin: the convergence
of the flow as it enters the tube. Movies are available with the online version of the
paper.

1. Introduction
Liquid jets emerge when a relatively large amount of kinetic energy is imparted to

a small mass of liquid near a free surface. In this paper we will concentrate on the
mechanism that produces the particularly intriguing ‘tubular jet’.

The tubular jet can be observed in a simple experiment in which a liquid rushes
upwards to fill an initially pressurized, vertical tube partially immersed in a bath of
fluid (see figure 1). As the liquid begins to rise in the tube after the pressure release,
in some cases a jet can be seen to emerge from the centre of the surface of the
rising liquid column. Figure 2(b) shows a typical example of such an experiment.
This tubular jet was first reported by Lorenceau et al. (2002), in a paper that mainly
focused on the oscillating motion of the liquid column as a whole. Although the
authors discussed some of the jet’s properties, it remained unclear what the driving
and focusing mechanisms for this jet are.

Mechanisms to focus momentum into a liquid jet are known to occur in great
variety. Examples are the jet produced by the printhead of an inkjet printer, where a
pressure wave in an open-ended channel is focused on the free surface at the nozzle
(Le 1998; Chen & Basaran 2002; de Jong et al. 2006a, b), or the jetting in a glass of
champagne, where the surface tension stresses focus on the base of an unstable cavity
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Figure 1. (a) Schematic drawing of the tubular jet setup, illustrating the main parameters of
the experiment: R the inner radius of the tube, H the distance from the bottom of the tube to
the water surface, L the distance from the bottom of the tube to the bottom of the tank, and
h the initial water level in the tube. Left: initial situation; right: during the rise of the column.
(b) The experimental setup in the laboratory with its main components labelled. 1: Argon-ion
laser; 2: mirrors; 3: cylindrical lenses; 4: tank; 5: tube; 6: camera.

at the surface and are released in a liquid jet (Liger-Belair et al. 2001; Boulstone &
Blake 1993). The jets produced by armour-piercing weapons have also been studied in
detail (Birkhoff et al. 1948). In this case the focusing is found to be purely geometrical
and the driving is provided by an explosive chemical reaction.

The jetting phenomena that are most closely related to the tubular jet are those
created by what could be best described as a pressure-driven geometrical flow focusing.
A first example is a tube filled with a perfectly wetting liquid falling axially under
its own weight. On impact of the tube on a rigid floor, the sudden change in the
tube velocity induces a pressure gradient which violently reverses the initial interface
curvature, forming a concentrated jet (Antkowiak et al. 2007). A second example is
the collapse of a surface cavity formed by the impact of a droplet or object onto a
fluid surface. Such a cavity collapses under the influence of hydrostatic pressure and
a pressure singularity occurs as the sides of the cavity collide, which is subsequently
released by the formation of an upward and a downward jet (Worthington 1908;
Longuet-Higgins, Kerman & Lunde 1991; Oguz & Prosperetti 1993; Blake et al.
1997; Gaudet 1998; Zeff et al. 2000; Zhang et al. 2001; Leppinen & Lister 2003;
Suryo, Doshi & Basaran 2003; Burton, Waldrep & Taborek 2005; Gordillo et al.
2005; Bergmann et al. 2006; Eggers et al. 2007; Ducleaux et al. 2007). A similar void
collapse is even observed in granular materials, when a steel ball impacts on a bed
of very fine, loose sand (Thoroddsen & Shen 2001; Lohse et al. 2004; Royer et al.
2005; Caballero Robledo et al. 2007). After the ‘hydrostatic’ void collapse, a jet of
sand shoots upward and another one downward.

In this paper we will show that the origin of the tubular jet is similar to the
geometrical flow focusing examples discussed above, but with the considerable
difference that the focusing geometry is now not provided by the topology of the
free surface alone, but is in essence due to the tube wall partly obstructing the flow.
Another distinct feature is that we find the tubular jet to reflect the interplay of
several flow focusing events instead of a single mechanism as was the case in all the
aforementioned jetting phenomena.
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Figure 2. Different types of jets for (initial) meniscus heights h =14mm (a), h = 0 mm (b), and
h = −6 mm (c) in a tube of inner radius R = 25 mm. The dotted white line indicates the bottom
of the tube and the solid white line is the depth of the centre of the initial meniscus;
h > 0 produces no jet, just a small bump of liquid in the centre of the tube, h ≈ 0 produces
a sharp jet, and h < 0 produces a detached rising water column from which a strong jet
erupts. In all cases the distance L to the ground is much larger than R (L � R). The tube
is submerged to a depth H of 200mm. Available as movie 1 with the online version of the
paper.

In § 2 we introduce the experiment and briefly discuss the relevant observations
reported by Lorenceau et al. which serve as a starting point for the present
investigation. Then in § 3 we discuss our own experimental setup together with
the experimental considerations. After this, in § 4, we present results from particle
image velocimetry experiments on the formation and closure of a surface cavity
which precedes the jet eruption. In § 5 we investigate the role of radial flow on the
jet eruption by comparing three different experimental configurations. To further
support our interpretation of the results, numerical potential flow calculations of the
jet formation are presented in § 6. In the concluding § 7 we summarize our findings.
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Figure 3. (a) The height of the water level in the tube zcolumn (diamonds) and the height
of the jet (dots) as a function of the time since the release of the overpressure in the tube
for R =25 mm, L � R, H = 150 mm, and h = 0 mm. The data are obtained by high-speed
imaging at a 1000 frames per second. The vertical dot-dashed line indicates the moment of
the jet eruption, when a sharp liquid spike becomes visible at the centre of the free surface
in the tube. Since the jet height is defined as the height of the centre of the interface, it can
exceed the column height before the actual moment of jet eruption owing to the rising rim.
A linear fit is made to the column data (dashed line) after the jet eruption to obtain the
column velocity vcolumn and a linear fit is made to the jet height (solid line) during the first
5 ms of the jet’s existence to obtain the initial jet velocity vjet . (b) The initial jet velocity vjet

non-dimensionalized by the velocity of the rising column
√

gH as a function of the initial
meniscus depth h normalized by the radius of the tube R. The black diamonds show the data
obtained by Lorenceau et al. (2002) (for R = 20 mm and H = 300 mm) and our experiments are
shown by the data points with an error bar for the conditions of R = 25 mm, L � R, and three
values of H (dark grey triangles: H = 150 mm, light grey circles: H = 200 mm, black crosses:
H =250 mm). It should be underlined that the tubular jet is not characterized by a constant
velocity and that vjet is the initial jet velocity which is obtained from the experimental data
using the procedure described in (a). The dashed line indicates vjet/

√
gH = 1.

2. Dynamics of a liquid column
When the overpressure inside a circular tube of inner radius R is released and

suddenly drops to the ambient level in the tank, the water column rises freely from
its initial level h to the (eventual) equilibrium level at H (both measured with respect
to the bottom of the tube, see figure 1a). The initial height of the water column h is
measured at the centre of the tube and the depth of immersion H is the distance from
the bottom of the tube to the ambient water level. Lorenceau et al. (2002) derived
expressions for the liquid column height zcolumn(t) as a function of time by describing
the rising liquid column in the tube as a (damped) oscillator with a continuously
varying mass. For the initial rise in the time interval relevant for the development of
the tubular jet (t � 6

√
H/g), zcolumn(t) was found to be linear in time after a short

period of initial acceleration (see figure 3a). The constant rise velocity of the column
was found to be

vcolumn =
dzcolumn

dt
=

√
gH , (2.1)

with g the gravitational acceleration. It is stressed that all derivations hold only for
H � R owing to the inclusion of entrance effects (dissipation by eddies).

As one starts with an initially empty tube, one would start with a singularity, as the
mass of the liquid column mcolumn(t) ∝ zcolumn(t) is 0 at the start. This was recognized as
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Figure 4. (a) Side view of the rim closure. (b) Rim closure seen from below (series similar to
images in Lorenceau et al. 2002). The time between consecutive frames is 6 ms and for both
series the experimental conditions are: R = 25 mm, L � R, H = 300 mm, and h = 0 mm. Series
(b) is available as movie 2 with the online version of the paper.

an unphysical feature of the model, since there is always a mass of liquid underneath
the tube entrance that must be accelerated. An entrance length z0 was defined as a
measure of this added mass at the tube entrance, giving mcolumn(t) ∝ zcolumn(t) + z0,
which was used to derive an equation to describe the initial acceleration stage of the
rise

zcolumn(t) ≈ h +
gHt2

2(h + z0)
, (2.2)

valid for the first instants of the rise, when t
√

gH � h + z0. The entrance length z0

was found to be of the order of the inner radius of the tube R and not to depend
on h.

It should be stressed that the above relations pertain only to the motion of the
liquid column as a whole, and do not capture the motion of the jet itself. Lorenceau
et al. did however make the following observations of the tubular jet. The maximum
height reached was found to depend strongly on the initial level of the liquid in
the column h. Note that h will have negative values for a meniscus bulging out
of the tube and positive values when the air/liquid interface is located inside the tube.
The tubular jet was found not to form at all for positive values of h, in this case only
a small bump of liquid being observed at the interface, and for negative h a strong
increase in the height of the jet was found as h decreased. It was also stated that the
jet forms after a short, but significant, delay of order t = R/

√
gH .

Mention is made of the existence of a ‘liquid crater’ on the surface of the rising
column. In figure 4 such a cavity can be clearly seen as a black ring due to the refrac-
tion of light through the curved shape of its rim. At the beginning of the rise,
this circular cavity forms and closes onto itself. The propagation speed of the rim
of this cavity was determined to be constant and the time needed to close the
cavity was found to be equal to the time delay before jet eruption, when a sharp
liquid spike becomes visible at the centre of the tube. This behaviour of the free
surface is sketched in figure 5. When the tubular jet was absent, e.g. in the case of
positive h, the rim was also not observed. The hypothesis of Lorenceau et al. (2002)
was that the rim is related to a circular vortex which remains close to the entrance as
the water flows into the tube. The objective of this paper is to check this hypothesis
and, more generally, to shed light onto the formation and development of the
jet.
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Time

Figure 5. A sketch of the free surface in the tube at different times based on the observations
of figure 4. Shortly after the pressure release a circular cavity forms and closes onto itself. The
collapse of the circular wave coincides with the eruption of the tubular jet. Notice that due to
the wetting properties of Perspex, the initial contact angle between the air/water interface and
the inside of the tube is smaller than 90◦.

3. Experiment
A schematic drawing and a picture of the setup we used for the investigation of the

tubular jet can be found in figures 1(a) and 1(b), respectively. A vertical, cylindrical
Perspex tube of inner radius R = 25 mm is partially submerged to a depth H in a glass
tank (dimensions 380 mm×780 mm×400 mm) which is filled to a depth H + L with
demineralized water. Since all experiments discussed in this paper were performed
with H between 0.025 and 0.35 m, typical velocities for the rising water level are of
the order of

√
gH ≈ 1 m s−1.

The top of the tube is connected to a compressed-air line in order to control the
initial meniscus depth h by pressurizing the air inside the tube. The top of the tube is
also connected to an electromagnetic valve which, when opened, causes the pressure
inside the tube to instantly drop to the ambient level. The diameter of the outlet hose
and valve opening is large enough such that the air flow is hardly restricted as it
leaves the tube.

Outside the tank a high-speed camera is set up approximately level with the bottom
of the tube, perpendicular to the glass sidewall of the tank. For the imaging of the
experiment, a Kodak CR2000 CCD camera is used at a frame rate of 1000 frames
per second and a resolution of 512 × 384 pixels. Backlighting of the tube is achieved
by a halogen lamp with a diffusive plate placed at the opposite side of the tank to
obtain typical images like those of figure 2.

The Reynolds number associated with the flow in the tube is

Re =
2R

√
gH

ν
, (3.1)

where ν is the kinematic viscosity of water. For the tube depths H of our experiments,
the Reynolds number ranges between 2.5 × 104 and 9 × 104 and viscous effects can
therefore be neglected for the main flow in the tube. Tube flow is generally turbulent
for Re > 4000, so this system would be well within the turbulent domain. However,
the flow is certainly not fully developed just as it enters the tube. For turbulent tube
flow, the entrance length is given by (Munson, Young & Okiishi 1998)

le/2R = 4.4(Re)1/6, (3.2)
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from which we calculate that for our case le is of the order of 1 m, which provides a
typical time scale for the flow development of about 1 s. The turbulent flow suggested
by the Reynolds number is clearly not yet developed on the time and length scales
we are considering, namely those for the eruption of the tubular jet.

After the initial acceleration of the water column the Weber and Froude numbers
associated with the tube flow are given by We = ρgHR/σ and Fr = H/R. Here ρ

denotes the density of water and σ the surface tension at the interface. For our
experiments the effect of surface tension can be neglected on the large scale of
the tube, since the Weber number ranges between 9 × 102 and 1.2 × 104. The Froude
number ranges between 1 and 14 which signals that the tube flow is indeed dominated
by a balance of gravity and inertia. Surface tension does however have some influence
on the shape of the meniscus, and thus affects the process of jet formation by changing
the initial condition from which the experiment starts.

As discussed in § 2, we find that the initial depth of the centre of the gas/liquid
interface h, in other words the meniscus, has a profound effect on the jet. Figure 3(b)
shows the strong dependence of the initial jet velocity vjet on h.

It should be underlined that the tubular jet is not characterized by a constant
velocity; the initial jet velocity vjet is measured through high-speed imaging in the
first 5 ms after the jet erupts from the free surface (see figure 3a). For comparison
the initial jet velocities obtained from figure 11 of Lorenceau et al. (2002) for a
slightly smaller tube of R = 20 mm are also included in figure 3(b). Since figure 11
of Lorenceau et al. (2002) shows the time dependence of the jet height relative to
the height of the water column, we can only compute the quantity vjet − vcolumn

from this figure. To obtain the absolute value of vjet we add vcolumn observed under
the same conditions (although in a slightly larger tube) from our experiments to
this result. Like the column velocity vcolumn , vjet is found to scale with

√
gH , which

facilitates the collapse of all velocity measurements for different H onto a single
curve.

The influence of h can be classified into three different regimes:
(i) For an initial meniscus sufficiently far inside the tube (h > 0, figure 2a), the

initial jet speed is of order
√

gH , in other words, vjet ≈ vcolumn . This corresponds to
the horizontal asymptotic value of 1 in figure 3(b). There is no jet, only a bump on
the water surface and the rim seen in figure 4 is also absent here.

(ii) For an initial meniscus flush with the bottom of the tube (h ≈ 0, figure 2b),
a rim is observed and a jet erupts shortly after the acceleration stage of the water
column rise.

(iii) For an initial meniscus bulging sufficiently out of the tube (h < 0, figure 2c),
the flow at the tube entrance cannot follow the 90◦ corner of the tube’s inner edge,
causing the rising column to separate from the inside wall of the tube. A very strong
jet is formed at the top of this detached water column, contributing to the steep rise
of the initial jet velocity in figure 3(b) for negative h. By rounding the edge of the
tube the separation can be partly suppressed.

As the influence of h on the jet velocity has already been studied in Lorenceau et al.
(2002), in the remainder of this paper we will focus on experiments with the initial
meniscus being flush with the bottom of the tube (h = 0). In this case there is a clear
tubular jet and we are unhindered by the possible separation of the liquid column
from the inner wall of the tube as is common for h < 0. Looking at this regime will
not limit the generality of our observations on the tubular jet, but will facilitate the
comparison between the different flow configurations introduced in the later sections
of this paper.
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(a) (b)

Figure 6. A droplet of water deposited on a clean and a vaseline covered Perspex surface.
(a) The apparent contact angle of the air/water interface with Perspex is approximately 55◦.
(b) The apparent contact angle of the air/water interface with vaseline treated Perspex is
about 85◦.

4. Formation and closure of the rim
Although the rim of figure 4 is observed whenever the tubular jet forms and the jet

eruption and rim closure are always simultaneous, it is not a priori clear that this rim
is a prerequisite for jet eruption. To investigate this, we will try to unravel the origin
and nature of this rim by answering the following questions:
Is the rim due to the initial capillary uprise of the meniscus detaching and travelling
over the free surface?
Does the rim propagate like a capillary or gravitational surface wave?
Do entrance vortices cause the rim to form and propagate?

4.1. Is the rim due to the initial capillary uprise of the meniscus detaching and
travelling over the free surface?

Owing to the wetting properties of Perspex, the initial air/water interface inside the
tube curves up, when the distance to the inner wall is below the capillary length (see
figure 6a). As the gas pressure inside the tube is released and the interface starts to
accelerate upwards, this initial curvature of the interface could detach and travel over
the surface as the rim.

To check whether the rim closure is indeed simply an inward propagation of the
capillary uprise, we applied a small amount of vaseline to the tube entrance (cf.
figure 6). This alters the contact angle between the interface and the tube, and will
flatten the interface near the inner wall of the tube. However, using this hydrophobic
tube entrance, the rim still formed and collapsed at the same constant velocity as was
found for the regular case. The rim can therefore not be attributed to the detachment
and propagation of the capillary uprise of the liquid at the wall.

4.2. Does the rim propagate like a capillary or gravitational surface wave?

The nature of the rim could reveal the mechanism by which it is produced. Therefore
we made direct observations of the rim with a high-speed camera, to investigate
whether it can be attributed to an initial disturbance which travels as a capillary or
gravitational surface wave towards the axis of the tube.

Based on figure 4 it seems plausible that the wave is a capillary or gravitational
surface wave, but in these recordings the camera was positioned horizontally and the
fluid interface obscures largely what is happening at the centre of the fluid cavity.
So, in order to make more revealing recordings, the high-speed camera was then
mounted at an angle above the setup to allow us to view what happens inside the
cavity as it collapses. The frames of figure 7 show these tilted recordings. The first
striking observation from figure 7 is that the rim moves into a flat inner region of the
interface with a steep front, more reminiscent of a hydraulic jump or bore than the
smooth front expected for a surface wave. The second observation is that in the first
two frames of figure 7 the rim, the size of which would correspond to a wavelength
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Figure 7. A series of images of the rim closure viewed from above at an angle for R = 25 mm,
L � R, H = 200mm, and h = 0 mm. The rim moves as a wall of fluid over the undisturbed
inner region of the interface, much like a hydraulic jump (Bohr et al. 1993). The jet is initiated
when the bottom of the fluid wall reaches the centre. The time between the images is 1 ms.
Available as movie 3 with the online version of the paper.

of roughly 1 cm or larger, is preceded by small capillary waves with wavelengths λ
smaller than 3 mm. These waves are observed from the start of the column rise, but
are ‘overtaken’ by the rim in the third frame. This also rules out the wave being a
capillary or gravitational wave, since these smaller capillary waves should propagate
faster than a 1 cm gravitational wave (see Appendix A).

Based on these two observations of the shape and propagation velocity of the rim,
it can be concluded that the rim is not propelled by gravitational or surface tension
forces. There must therefore be a different propulsion mechanism for the rim.

4.3. PIV experiments: Do entrance vortices cause the rim to form and propagate?

Since the rim does not propagate like a surface wave, could the vortex, located at
the entrance of the tube, drive it as was proposed by Lorenceau et al. (2002)? As the
column starts to rise, the entrance vortex could deflect the fluid above it outwards,
towards the wall of the tube, forming a rim. This effect would weaken as the surface
moves away from the entrance vortex, causing the rim to move inward. To investigate
this possible effect high-speed particle image velocimetry (PIV) is used.

To perform the PIV measurements, the fluid is seeded with small Dantec Dynamics
polyamid tracer particles of radius 25 μm and density 1030 kg m−3 that will follow
the flow. A laser sheet is shone through the fluid and creates an illuminated plane
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inside the flow (see figure 1b). The light scattered by the tracer particles is captured
by a high-speed camera at a frame rate of 1000 frames per second and a resolution
of 1280 × 512 pixels. This series of images is then correlated by multipass algorithms,
using DaVis PIV software by LaVision, in order to determine the flow field in the
liquid over a two-dimensional area for extended periods of time. The correlation was
performed in three passes at sub-pixel accuracy, using 64 × 64 pixels, 32 × 32 pixels
and 16 × 16 pixels interrogation windows. The windows overlap by 50%, resulting in
one velocity vector every 8 × 8 pixels.

For the illumination of the high-speed PIV measurements we use a Spectra Physics
Stabilite 2017 Argon Ion laser, which outputs continuously at a wavelength of 514.5
nm. Using this continuous laser, the frame rate of the recording camera determines the
number of field measurements per second. Power output is an important consideration,
because short exposure times are preferable to prevent motion blurring of the particle
images. Using the laser at its full 6 W power output allowed an exposure time of
0.1 ms. With a typical flow velocity of 1m s−1 and an image scaling of 10 pixelsmm−1

the particle images will not move more than one pixel during the exposure, so the
blurring effect is minimal. The laser beam is converted into a light sheet by means of
three cylindrical lenses. In the experimental setup, the light sheet is oriented vertically,
in order to illuminate the flow from below (see figure 1b). We found this preferable
to a horizontally oriented light sheet shining through the side of the tube, because
a horizontally aligned light sheet is reflected many times inside the tube, causing a
bright glare near the sides. Moreover, the main flow direction is oriented vertically, so
a horizontally oriented light sheet would have to be of considerable width (∼ 100 mm)
to fully illuminate the area of interest.

From these high-speed PIV measurements one obtains typical images of the velocity
field such as in figure 8. In this figure the image of the original high-speed recording
is overlaid with the obtained PIV results. The PIV software also produces velocity
vectors at the free surface and even inside the jet, but these vectors are highly
inaccurate, owing to the large optical distortions caused by the curvature of the
air/water interface and are thus not shown.

A vortex is visible at the entrance of the tube in figure 8(a) and enlarged in
figure 8(b). The velocity gradients in the interior of this vortex are large†, but can
be resolved by our experimental setup. There is however no need to do so, because
only the edges of the vortex and not its internal structure are of interest, since this is
a measure of whether the vortex is close enough to the free surface to produce the
rim. The size of the recirculation zone is indicated by the dashed white line which
is the streamline originating at the inner edge of the tube. During the rise of the
water column, the entrance vortex stretches in the radial r and the axial z directions.
However at the beginning, when the water column starts to rise and the rim is formed,
the vortex is still absent. Later, as the vortex is fully developed as in figure 8, it lags
considerably behind the column height.

Figure 9 shows the vortex growth from a different perspective. Here the radial flow
velocity component vr at a distance �z below the rising interface is plotted as a
colour plot. The position at which the profiles are monitored is moving upward with
the free surface at a fixed distance �z = 4 mm. The blue colours represent negative
vr (directed towards the r =0 axis). We observe a strong inward-directed radial flow

† A closer investigation of the vortex by PIV revealed velocity gradients �v/�x as large as
6 × 102 s−1.



The origin of the tubular jet 29

70

(a)

(b)

60

50

40

30

20

10

0

–10

–20

–10 0 10 20

z 
(m

m
)

z 
(m

m
)

r (mm)

r (mm)

1.8

1.5 1.5

1.0

5

0

1.2

0.9

0.6

0.3

0

(m s–1)

15 20 25

Figure 8. The velocity field obtained by PIV overlaid on the original high-speed recording.
For clarity, only one-sixteenth of the measured vectors are shown in (a) and one-fourth in the
enlargement of the vortex region in (b). The recording is taken 50 ms after the pressure release
and at the time that the water column has reached a height of about 40 mm and the jet has
just erupted. The experimental conditions are H = 150, L � R, and h = 0 mm. The shaded area
on the right depicts the tube wall and the recirculation zone is indicated by the streamline
originating at the inner edge of the wall (dashed white line).

near the white line, which indicates the radial position of the rim, assuming a constant
velocity of closure. The white dot indicates the moment of jet eruption. The radial
flow near the closing rim originates at the tube’s bottom edge and spreads into and
up the tube over time. The rim seems to be ‘pushed along’ by this inward flow directly
beneath it. The rim propagation can therefore not be described purely as a travelling
cylindrical wave; bulk flow effects dictate its movement.

A second observation is that the region of outward-directed flow is far away from
the rim and only develops after the rim has passed. The rim therefore cannot be
formed by the deflection of fluid towards the tube wall by the entrance vortex as
hypothesized and dismissed before. It turns out that the vortex does not play any
significant role in the creation or propagation of the rim.

4.4. The origin of the rim

In the previous three subsections we have seen that the rim cannot be explained by
the initial curvature of the meniscus, nor by a capillary or gravitational surface wave,
nor by the vortex at the entrance of the tube. So what can explain the rim formation?
To answer this question we look at the development of the flow at the tube entrance
in the initial instants of the column rise, since this is where the radial flow ‘pushing’
the rim seemed to originate.
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Figure 9. (a) A schematic showing how the position at which the flow velocity is monitored
in (b) is moving upward with the free surface at a fixed distance �z. (b) The radial flow
velocity component vr at a distance �z =4 mm below the rising interface, plotted as a colour
plot. The blue colours represent negative vr (directed towards the r = 0 axis). We observe a
strong inward-directed radial flow near the white line which indicates the time evolution of the
radial position of the rim. The white dot indicates the moment of jet eruption. The radial flow
near the closing rim originates at the tube’s bottom edge and spreads into and up the tube
over time. The rim seems to be ‘pushed along’ by this focusing flow directly beneath it. The
focused flow vanishes at the centre of the tube at r = 0 mm. The region of outward-directed
flow, whose boundary is indicated by the black solid curve of vr = 0, does not influence the
rim closure as, at any time t , it is positioned far away from the closing rim. R = 25 mm, L � R,
H =150 mm, and h = 0 mm.
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Figure 10. The velocity field obtained from PIV measurements at the tube entrance for
H =150 mm, 10 ms after the pressure release. The grey shaded area on the right indicates the
location of the tube wall. R = 25 mm, L � R, and h = 0 mm.

Figure 10 shows the flow in the experiment at the tube entrance 10 ms after the
pressure release. The data represent an average of four separate PIV experiments. It
is clear that there is a stronger inflow of fluid near r = R on the time scale for the
creation of the rim. For this depth H of 150 mm the time scale on which the rim fully
develops and starts to move radially inward is 10 ms. The distance of the free surface
from the entrance of the tube at that time is only 2 mm. The enhanced axial flow will
thus influence the shape of the free surface and produce the rim.

We call this purely geometrical effect of the tube wall forcing the axial and radial
flow into the tube and necessarily speeding it up in the process the funnelling effect.
This enhancement of flow along the inner edge of the tube might at first seem
somewhat counter–intuitive. But even in a simplified configuration with a stationary,
purely radial inflow into the tube region, such an enhancement arises naturally, as
will be show in § 4.5.
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4.5. The funnelling effect

To corroborate that the funnelling effect is generic to the geometry of a flow
entering a contraction, we have performed a potential flow analysis of a simplified
configuration with a stationary and constant radial flow at the tube entrance. As
stated in the introduction, the Reynolds number is considerable and the funnelling
effect develops rapidly compared to the time scale for the development of vorticity,
so to a good approximation, the initial flow can be described by potential theory. The
flow configuration in this example has been chosen such that it is analytically tractable
and does not particularly favour the development of an enhanced axial flow along the
outer boundary. In fact, the inflow in the experiment may more resemble a sink flow
with a finite size effect with a relatively high radial velocity just below the bottom
of the tube, and thus only reinforce the funnelling effect in comparison to the initial
condition taken in this example. The full boundary integral simulations of the flow
presented in § 6 will yield a much more precise description of the flow within the
framework of potential theory.

In the current example we use a constant, purely radial inflow boundary condition
in the region directly below the inner tube wall, and a zero normal flow at the bottom
of the container, which is positioned at a depth R below the tube (see figure 11a).
With these boundary conditions, the potential of the flow ϕ can be solved analytically
as detailed in Appendix B, leading to the flow potential and velocity field plotted
in figure 11(b), where we observe a clear enhancement of the axial flow at the tube
wall. This becomes even more clear-cut when looking at the radial and axial velocity
components at the tube entrance as a function of r which are shown in figures 11(c)
and 11(d) respectively: the radial component decreases in magnitude as it comes
closer to the symmetry-axis of the tube at r = 0, directly above the stagnation point
located at the bottom of the container, and most importantly, the axial component
in this unfavourable example is more than twice as large at the tube wall as in the
centre of the tube.

It is this enhanced axial velocity at the tube edge, combined with the considerable
radial velocity at this position, that produces the funnelling effect: the enhanced axial
flow at the tube edge locally lifts up the free surface and the radial flow component
then pushes it inwards, thus creating the rim. So, even for this simplified example of
a purely radially driven flow the funnelling effect arises naturally.

5. Investigating the role of the radial flow
In the previous Section we discussed the importance of the radial inflow into the

tube for the existence of the funnelling effect and the formation of the rim and jet. In
this section we will investigate this in more detail, first by looking at the relative flow
into the jet region by subtracting the column velocity, and secondly by experimentally
influencing the relative importance of the radial flow component with respect to the
axial flow component.

The first idea is inspired by the following. Owing to symmetry the radial component
of the flow directly underneath the free surface must vanish at r = 0. It is conceivable
that due to continuity this vanishing inward radial flow gives rise to a non-zero axial
flow into the jet on top of the main axial flow component vcolumn . This induced (extra)
axial flow would then locally push the interface up and feed the jet.

To visualize this effect, the column velocity vcolumn is subtracted from the results
obtained by the PIV measurements. Figure 12 shows this motion of the fluid relative
to the bulk column motion at various times. From figure 12 it is seen that after the
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Figure 11. (a) The initial conditions for the flow potential ϕ, which illustrates the enhancement
of the axial flow along the wall of a contraction. These boundary conditions assume a constant
radial inflow of strength V0 to a depth R below the tube (solid arrows). The expected flow
is drawn as dashed arrows. (b) The potential and flow given by the configuration of (a). As
detailed in Appendix B, the potential ϕ is obtained by (B 3) and is indicated by the isolines.
The flow direction and strength obtained by (B 4) and (B 5) are given by the arrows. (c, d)
The radial and axial flow components, vr and vz respectively, at the entrance of the tube
(z = R) obtained by (B 4) and (B 5) for the flow configuration of (a). Note that the axial flow
is enhanced along the wall.

formation of the rim at t > 30 ms the axial component of the flow is increased around
r = 0 and the interface is pushed upwards in the centre of the tube. The bump which
we saw in figures 4 and 7 is thus not just due to the increasing amplitude of the
inward-travelling cylindrical wave; there is also an effect of the radial flow beneath
it. We also see that there is a continuous flow of fluid from the bulk into the jet. This
flow is strongest before the eruption of the jet when we see the rising bump on the
interface.

Secondly in this Section we experimentally determine the influence of this effect.
To this end we devised a method to enhance and reduce the relative importance of
the radial flow in the experiment (figure 13a). Reduced radial inflow is obtained by
placing a second, larger tube around the first, thus locally blocking the flow in the
radial direction directly below the tube inlet (figure 13b). Enhanced radial inflow is
achieved by simply positioning the tube very close to the bottom, such that the axial
inflow is obstructed (figure 13c). Both are discussed in more detail below.

Reduced radial inflow. By placing a second, larger tube around the entrance of the
main tube, the radial inflow into the tube is reduced (see figure 13b). The second tube
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Figure 13. The three different flow situations: (a) normal flow, (b) reduced radial flow, and
(c) enhanced radial flow.

(inner radius of Rs = 35 mm) extends twice its radius below the main tube’s entrance
in order for its entrance effects (e.g. entrance vortex) not to influence the flow into
the main tube. Since the liquid still starts with a meniscus in the main tube and the
fluid is flowing through a contraction at the main tube’s entrance, there will still be a
certain amount of radial inflow, though strongly reduced with respect to the ‘normal’
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situation. This situation is similar to the case of h � 0 if Rs ≈ R, for which we have
already observed that neither a jet nor a rim is formed.

Enhanced radial inflow. Now the tube entrance is placed very near to the bottom of
the tank, thereby relatively enhancing the effect of the radial inflow by blocking the
inflow in the axial direction (figure 13c). Since the entrance depth z0 is of order R,
we must take L < R to significantly increase the radial flow component.

The precise value of L suitable for this setup can be determined by experimentally
investigating the influence of L on the rise velocity of the water level vcolumn and the
initial jet velocity vjet . From the high-speed camera recordings we observe that the
jet velocity is indeed significantly affected by decreasing L below R. While the initial
jet velocity increases, the column velocity decreases for small L. When L is decreased
below L = 1

5
R the rising water column detaches from the inside of the tube. Even

though this detachment is generally seen for h < 0, for such small values of L at h = 0
the enhanced radial flow no longer follows the inner corner at the tube’s entrance.
This phenomenon would make quantification and comparison with other experiments
difficult. Therefore L = 2

5
R (10 mm) was chosen as a suitable value for the radially

enhanced flow experiments, since its effect on the initial jet speed is still considerable
and detachment of the water column did not occur.

We will first discuss how the radial flow influences the rim, after which the influence
on the jet itself will be discussed. In the experiments the strength of the radial inflow
influences the shape of the cavity. The cavity is deeper and the rim is steeper for
the radially enhanced flow, whereas the cavity is much less prevalent (though not
completely absent) in the case of the radially reduced flow (see figure 14). This is also
reflected in the flow field at the entrance of the tube. A strong funnelling effect, like
that previously observed in figure 10, can be seen to occur in the radially enhanced
experiment. In the case of the radial reduced flow this effect seems to be, just like the
rim, largely absent.

The propagation mechanism for the rim, the fluid flow directly underneath the
free surface, also exhibits a strong dependence on the radial flow component. In the
case of radially enhanced flow the vr component pushing the rim along is stronger
compared to the normal flow situation (figure 9). In the case of radial obstructed flow
however, this mechanism is observed to be considerably weakened. As a result, the
rim propagates at a slower velocity and closes much later than it does for the normal
and enhanced radial flow experiments, e.g. at a depth H of 175 mm the time of jet
eruption increases from 36 ms to 57 ms (see figure 14).

These experiments underline our earlier observations about the rim, namely that
it is created by the funnelling effect at the entrance of the tube and that it is being
pushed along by the inward radial flow directly underneath the interface. Both effects
are made stronger by enhancing the radial flow component in the entrance flow.

Turning now to the jet creation, we find that the radially obstructed flow produces
much weaker jets. Owing to the slower rim collapse the jet also erupts later when
compared to the normal and radially enhanced case. The jets produced by the radially
enhanced flow are comparable in height to the normal case, even though the total
flow of liquid into the tube is restricted (the water column rises considerably slower).

In figure 15(a) the ratio of the measured rise velocity vcolumn and the expected rise
velocity

√
gH is plotted against the immersion depth H/R of the column. It is seen

that the expected rise velocity is only reached for the considerable depth of H > 10R in
the case of the normal flow configuration. The column rise velocity in the two altered
setups is found to be much smaller than in the unaltered case. For a better com-
parison of the initial jet speed in the three different flow configurations, in figure 15(b)
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Figure 14. Close-up view of the closing rim for normal (top), radially reduced (middle), and
radially enhanced (bottom) flow (see main text for the details of the geometry). Clearly, the
rim is much more pronounced for stronger radial flows. The time interval between consecutive
images is �t = 3 ms for the top and bottom series, and twice this value (�t = 6 ms) for the
middle series, owing to the slower propagation speed of the rim in this case. In each case,
the first image of each series is taken at t = 15 ms from the pressure release time. R = 25 mm,
L � R, H = 175 mm, and h = 0 mm.

we therefore normalize the initial jet velocities by the measured vcolumn instead of by
using

√
gH . The radially enhanced setup consistently produces the strongest jets, even

though the total fluid flux into the tube is restricted. The radially obstructed setup
on the other hand produces the weakest jets. The normalized initial jet velocities
seem to level off for H > 10R (250 mm) and scale with vcolumn in this limit.

We conclude that the increase of the radial flow strongly enhances the erupting
jet. The enhanced radial flow setup has a stronger radial flow and collapse, and
subsequently, a stronger axial flow feeding the jet after the rim collapse. This is all in
good agreement with the mechanism of rim and jet formation outlined in the previous
Section.

In addition, the findings of this Section also shed light on the mechanism by which
the initial meniscus height h determines the strength of the jet (see figures 2 and 3).
For h > 0, with the initial meniscus well inside the tube, the local radial inflow at the
free surface is effectively blocked by the tube walls, preventing the formation of the
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Figure 15. The influence of the radial flow on the initial jet and column velocities (see
figure 13). The radially reduced flow configuration (light grey stars) and the radially enhanced
flow configuration (black diamonds) are compared to the normal flow situation (dark grey
triangles). (a) The column velocity as a function of the depth. Only for large depth H does
vcolumn tend to

√
gH . (b) The initial jet velocity vjet normalized by the column velocity vcolumn

as a function of the depth. As the radial flow is enhanced, the initial jet velocity is found to be
considerably larger than vcolumn . For large depth H the ratio vjet/vcolumn tends to a constant.
R = 25 mm, L � R, and h = 0 mm.

rim and therefore producing a small jet at most. By contrast, for h < 0 the meniscus
bulges out of the tube and there will be a strong local radial inflow at the free surface,
resulting in a massive rim and a strong jet.

6. Comparison between boundary integral simulations and experiments
To further support our findings and corroborate that vorticity indeed plays no

significant role in the creation of the tubular jet, we have performed a potential flow
calculation. In this, the exact geometry of the problem is taken into account, including
the initial shape of the meniscus and the moving free surface, making it necessary to
solve the potential numerically by means of a boundary integral simulation (Pozrikidis
1997) which is discussed in more detail in Appendix C.

We start from a numerical initial condition obtained from the Young–Laplace
equation which very nicely corresponds to the experimentally observed shape of the
meniscus (see Appendix C.1 for details) and then calculate the evolution of the free



The origin of the tubular jet 37

100

80

60

40

20

0

–40 –20 0 20 40

z 
(m

m
)

r (mm)

100

80

60

40

20

0

–40 –20 0 20 40

r (mm)

100

80

60

40

20

0

–40 –20 0 20 40

z 
(m

m
)

r (mm)

100

80

60

40

20

0

–40 –20 0 20 40

r (mm)

100

80

60

40

20

0

–40 –20 0 20 40

r (mm)

(a) t = 0 ms (b) t = 5 ms

(d) t = 25 ms (e) t = 35 ms

(c) t = 15 ms

Figure 16. The experiments (snapshots) overlaid by the numerical result (white line) for the
free surface at different instances in time. The tube wall used for the numerical calculation
is indicated by the grey shaded area. The height of the numerically obtained free surface is
adjusted to compensate for the faster rising of the liquid column in our numerical calculations.
The shape and time evolution of the numerically obtained free surface is shown without any
further adjustment. R = 25 mm, L � R, H = 300mm, and h = 0 mm.

surface in time. When we compare the boundary integral simulation to an experiment
under the same conditions, the first striking observation is the excellent agreement of
the shape of the free surface, the velocity of the rim, and the moment at which the
jet erupts (see figure 16). However, we find the water column to rise more quickly
in the numerical calculations compared to the experiments. In both cases the rise
velocities vcolumn tend to the same constant velocity, but the initial acceleration of the
water column in the numerical calculations is considerably higher. This difference in
acceleration could be due to a difference in the global flow structure, since in the
numerical calculations only the bottom wall of the tank is taken into consideration and
its sidewalls are neglected. These sidewalls could only be included in the calculations
by introducing them as image planes, and subsequently introducing four more tubes
into the numerical calculations, but this would call for a full three–dimensional
calculation which is unachievable for our axisymmetric boundary integral code. The
tubular jet, however, depends only on the local flow structure, namely the funnelling
effect at the tube entrance and continuity at the centre of the tube, which allows us
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to simply compensate for the increased rising of the water column as was done in
figure 16, giving excellent agreement between simulation and experiment.

Most notably, in the numerical calculations we observe the same funnelling effect
along the edge of the tube generating the cavity as in experiment, which is clearly
visible in figures 16(b) and 16(c). The propulsion of the rim by the radial flow is
also observed, including the rising of the centre bump and the eruption of the jet at
exactly the same time as in the experiment (figure 16d, e).

Since this potential flow calculation does not include viscosity and vorticity, we
again conclude that vorticity is not part of any of the mechanisms leading to the
eruption of the tubular jet.

7. Conclusions
We have investigated the origins of the tubular jet and found that the inward

radial flow strongly influences the strength and formation of the jet. Several effects,
all originating from the converging radial inflow, work together to create the tubular
jet. The results of high-speed imaging, PIV measurements, and simulations lead to
the following sequence of events:

Directly after the pressure in the tube is released, liquid is funnelled into the tube.
If the meniscus is close enough to the bottom of the tube, the axial component of the
flow pushes the perimeter of the interface upwards forming a rim.

This rim, propagating more like a hydraulic jump or bore than a surface wave,
travels inward and is pushed along by the inward radial flow directly underneath the
interface. The singularity that occurs when the rim reaches the centre is manifested
as a sharp jet shooting upwards.

During the formation and propagation of the rim, a bump of fluid forms on the
surface of the rising water column. We have shown through PIV experiments that this
bump is not merely the increase in amplitude that is seen in converging cylindrical
waves. Fluid flows up into the bump from below, driven by the converging flow in the
bulk of the column. This flow continues to feed the singularity caused by the rim for
a short time. Lorenceau et al. (2002) dismissed the idea that the tubular jet is caused
by flow convergence on the grounds that such an effect would not appear after a
delay. We have shown in experiments and irrotational potential flow simulations that
the flow convergence affects the flow not after a delay, but from the very beginning
of the process.

By experimentally obstructing and enhancing the radial flow component, we find
that the bump and rim both depend on converging flow for their formation. The two
mechanisms evolve separately, and then merge together to create the tubular jet.

Thus we have shown that the origin of the tubular jet lies entirely in the focusing
of flow entering the tube. Therefore, the tubular jet is similar to jets that are produced
by a geometrical flow focusing of the free surface of the liquid as discussed in the
introduction of this paper. There are important differences however. First, it is not
the initial shape of the free surface that produces the tubular jet, but the fact that the
liquid has to enter the space confined by the tube walls. Secondly, the uniqueness of
the tubular jet stems from the merging of two initially separate events: the creation,
propagation, and collapse of the rim together with the continuous feeding of the jet
by the enhanced vertical flow at the axis of the tube.
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of the Boundary Integral code. We are also grateful to Johanna Bos and Roderick
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Appendix A. Gravitational and capillary waves
In figure 7 we observe that the rim overtakes the smaller capillary waves as it

travels to the centre. In this Appendix we check whether a gravitational wave of the
size of the rim would indeed travel faster than the observed capillary waves.

The surface waves are observed during the initial acceleration of the water column,
therefore the waves are subject to an acceleration besides gravity. If we take z0 to be
of order R (Lorenceau et al. 2002) and differentiate (2.2), we find an initial column
acceleration of z̈column = (H/R)g. If we introduce the total acceleration g(1+H/R) into
the dispersion relation of a surface wave in the deep water approximation (Landau
& Lifshitz 1987), we find

c(k) =
ω

k
=

√
g

k

(
1 +

H

R

)
+

σk

ρ
, (A 1)

with k being the wavenumber and ρ the density of the liquid. However, if the rim
shape is a surface wave, it cannot be described by a simple monochromatic wave; it
should be a superposition of many waves of varying wavenumber. Its propagation
speed is thus given by the group velocity cg , defined as the derivative of the temporal
frequency with respect to the spatial frequency,

cg(k) =
dω

dk
= c(k) +

−g/k(1 + H/R) + σk/ρ

2c(k)
. (A 2)

From (A 2) we find that the smaller, inner waves of 2π/k = 3 mm will have a typical
velocity of order 0.6 m s−1, while a surface wave of the size of the rim (roughly 2π/k =
1 cm or larger) would travel much slower, namely at a speed of 0.3 m s−1 for the depth
of figure 7 (H = 200 mm). Since the rim shape is seen to ‘overtake’ the capillary waves
in figure 7, it thus cannot be a gravitational surface wave and must be propelled by
the liquid flowing in the tube.

Although (A 1) is commonly found in the context of two-dimensional waves, it can
be shown (see e.g. Saylor, Szeri & Foulks 2000) that the dispersion relation also holds
for axisymmetric waves in the capillary regime.

Appendix B. Calculation of the funnelling effect
In this Appendix we calculate the flow potential in the region below the tube in

the simplified configuration with a stationary and constant radial inflow at the tube
entrance, which is discussed in § 4.5. For short time scales this leads to a potential flow
problem in which gravity can be neglected and the boundary conditions are given by
(see figure 11a) (

∂ϕ

∂r

)
r=R

= −V0 ,

(
∂ϕ

∂z

)
z=0

= 0, (B 1)

of which the latter can be taken care of by the image method: creating an image of
the flow configuration in the plane z = 0 will create the correct boundary condition
at the bottom.
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The axisymmetric form of Green’s identity can be employed to write the solution
to the Laplace equation ∇2ϕ = 0 for the flow potential ϕ(r, z) in terms of an integral
over the boundary S of the domain (Pozrikidis 1997), namely

ϕ =
1

2

∫
S

r̂

(
G

∂ϕ

∂n
− ϕ

∂G

∂n

)
dS , (B 2)

where n is the normal to the surface S, and

G =
2

π

∫ π/2

0

((r + r̂)2 + (z − ẑ)2 − 4rr̂ cos2 θ)−1/2dθ.

In this way, integrating over all points (r̂ , ẑ) on the boundary S, the potential ϕ at
any point (r, z) in the bulk can be obtained.

If we now use the boundary conditions discussed above and depicted in figure 11(a),
we can rewrite (B 2) as

ϕ = −V0R

π

∫ L

−L

∫ π/2

0

a−1/2 dθ dẑ, (B 3)

with

a = (r + R)2 + (z − ẑ)2 − 4rR cos2 θ.

Carrying out the integration of (B 3) with respect to ẑ and θ , and subsequently
differentiating with respect to either r or z, yields the radial vr and axial vz flow
velocities at point (r, z), namely

vr =
∂ϕ

∂r
= −V0

π
[G(r, z) + G(r, −z)] , (B 4)

with

G(r, z) = R
z − L

2r
√

b

[
r − R

r + R
Π

(
4rR

(r + R)2
,

√
4rR

b

)
+ K

(√
4rR

b

)]
,

and

vz =
∂ϕ

∂z
=

V0

π
[F (r, z) − F (r, −z)], (B 5)

with

F (r, z) =
R√
b

K

(√
4rR

b

)
.

Here Π(n, k) =
∫ π/2

0
((1 − n cos2 θ)

√
1 − k2 cos2 θ )−1dθ is the complete elliptic integral

of the third kind, K(k) =
∫ π/2

0
(
√

1 − k2 cos2 θ)−1dθ is the complete elliptic integral of

the first kind, and b = (r + R)2 + (z − L)2.
The flow potential and flow field equations (B 3), (B 4), and (B 5) are plotted in

figures 11(b), 11(c), and 11(d).

Appendix C. Boundary integral simulation
To verify that vorticity plays no role in the creation of the tubular jet, we

performed axisymmetric boundary integral simulations (Pozrikidis 1997). Since the
exact geometry of the problem is now taken into account, including the moving free
surface, the potential flow formulation briefly discussed in Appendix B is now solved
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Figure 17. Comparison of the meniscus obtained by the shooting routine with the meniscus
observed in the experiment. The numerical solution (dashed white line) is overlaid on the
left half of a photograph of the meniscus (h = −3.5 mm, R = 25 mm). The interface in the
photograph is illuminated by a laser sheet and can be seen in the right half.

numerically. In § 3 we found that the initial state of the system, namely the meniscus,
has a profound effect on the tubular jet. So, as a prerequisite for obtaining realistic
simulation results we first have to accurately capture this initial condition.

C.1. Initial condition for the boundary integral simulation

In order to obtain the shape of the meniscus as an initial condition for the simulations,
we use the Young–Laplace equation (Middleman 1995) to describe the shape of the
liquid–gas interface in equilibrium,

Pwater − Pair = 2σκ, (C 1)

where Pwater and Pair are the pressures at the air–water interface, σ is the surface
tension, and κ is the mean curvature of the interface. The hydrostatic pressure in
the water is defined as Pwater = ρg(H − z) and as long as the surface is flat at r =0
(this is the case for R sufficiently larger than the capillary length), the air pressure
inside the tube is given by Pair = ρg(H − h). The air–water interface is represented as
an axisymmetric surface described by a revolution of the curve r(z). This curve has
endpoints at [0, R] at the inner wall of the tube and [h, 0] on the z-axis. The mean
curvature at any point (r, z) on such a surface is given by

2κ =
d2r/dz2

[1 + (dr/dz)2]3/2
+

1

r[1 + (dr/dz)2]1/2
. (C 2)

Combining (C 1) and (C 2) we can obtain an ODE which must be solved numerically
using a shooting method, because the two boundary conditions are defined at two
different ends:
1. r(0) = R; the interface must meet the tube’s inner edge,
2. r(h) = 0; the meniscus depth is h.
In this way a meniscus shape is obtained which is in excellent agreement with
the experimentally observed meniscus shape, as can be seen in figure 17. This
numerical meniscus shape will be used as the initial condition in our boundary
integral simulations.

C.2. Boundary integral simulation

The moving free surface is iteratively solved in time using an axisymmetric boundary
integral formulation for the potential ϕ with the standard kinematic and dynamic
boundary conditions (Oguz & Prosperetti 1990; Longuet-Higgins et al. 1991; Oguz
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& Prosperetti 1993; Boulstone & Blake 1993; Blake et al. 1997; Gaudet 1998; Zhu,
Oguz & Prosperetti 2000; Zhang et al. 2001; Prosperetti 2002; Leppinen & Lister
2003; Gordillo et al. 2005; Gordillo & Perez-Saborid 2006; Eggers et al. 2007).

The kinematic boundary condition on an impermeable surface effectively specifies
that there can be no flow across the free surface. This means that the surface must
move with the local fluid velocity, perpendicular to the surface ∇ϕ · n. At the static,
solid wall of the tube, the boundary condition simply states that there can be no flow
across the boundary, so ∇ϕ · n = 0.

At the free surface the normal stresses also need to be continuous. In our case
at the other side of the fluid interface, there is a gas with negligible dynamic effects
and a constant pressure Pair . If we assume that the viscous stress contribution is
negligible, then the pressure at the surface has to satisfy (C 1). It can be shown that
the contribution of the surface vorticity to the pressure is negligible, thus we can use
the unsteady Bernoulli equation to obtain an implicit condition for ∂ϕ/∂t along the
free surface. This condition is often referred to as the dynamic boundary condition.

As an added complication the contact points are not fixed at a particular
geometrical location. The contact points are allowed to move freely along the solid
walls of the tube, following the local fluid velocity. Note that the contact line, like all
of the fluid, does not experience any friction along the wall.

There is however also a numerical difficulty of the boundary integral formulation
related to the free surface. When the free surface closes on itself, the free surface curve
will self-intersect and cause a singularity. It is possible to set up a procedure to detect
imminent self-intersection and perform a pinch-off by cutting off the drop or bubble
after reconnecting the free surface. Such a procedure is however not implemented
in our simulation. This severe numerical difficulty limits the range of our numerical
investigation to figure 16 and prevents a thorough numerical study of the parameters,
because as the surface cavity closes and its walls intersect, or droplets are pinched off
at the tip of the jet by the Plateau instability, the simulation halts. Nevertheless, the
excellent agreement between the simulations and experiment in figure 16 makes clear
that the inviscid and vorticity-free description of potential flow suffices to recreate the
tubular jet.
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